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Abstract
The dynamics of randomly crosslinked liquids is addressed via Rouse-type and
Zimm-type models with crosslink statistics taken either from bond percolation
or Erdős–Rényi random graphs. While the Rouse-type model isolates the effects
of the random connectivity on the dynamics of molecular clusters, the Zimm-
type model also accounts for hydrodynamic interactions on a preaveraged
level. The incoherent intermediate scattering function is computed in thermal
equilibrium; its critical behaviour near the sol–gel transition is analysed and
related to the scaling of cluster diffusion constants at the critical point. Second,
non-equilibrium dynamics is studied by looking at stress relaxation in a simple
shear flow. Anomalous stress relaxation and critical rheological properties are
derived. Some of the results contradict long-standing scaling arguments, which
are shown to be flawed by inconsistencies.
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S1660 H Löwe et al

1. Introduction

Gelling liquids are part of everyday life. One encounters them, for example, when preparing
a chocolate pudding or when sticking two materials together with the help of glue. From a
microscopic point of view, gelling liquids consist of irregularly structured clusters of molecules
or macromolecules. The formation of these clusters is either a result of intermolecular asso-
ciation, produced by e.g. van der Waals forces, electrostatic attractions or hydrogen bonding,
or a result of chemical reactions such as polycondensation, polymerization or vulcanization
induced by a chemical crosslinker [1, 2]. Intermolecular association, also called physical gela-
tion, leads to weakly bound clusters, which typically form and dissolve reversibly in the course
of time during an experiment. On the other hand, chemical gelation leads to permanent clusters
at temperatures of interest, and it is this situation that we will exclusively consider here.

When increasing the concentration of crosslinks in a liquid (sol) one observes a more and
more viscous behaviour under shear stresses, until a sudden transformation to an amorphous
solid state takes place at a certain critical crosslink concentration. This point marks the gelation
transition or sol–gel transition. The static shear viscosity diverges at the transition, and the
onset of a static shear modulus is found.

Carothers [3] was the first to interpret the gelation transition as due to the formation of
a macroscopic cluster of molecules in the system. His considerations were quantified and
refined by Flory [4, 5] and Stockmayer [6, 7] to what is nowadays called ‘classical theory’, a
percolation model of tree-like structures, closely related to percolation on Bethe lattices [8]. So
the classical theory arises [9] in the mean field approximation of lattice–bond percolation [10].
Stauffer [11] and de Gennes [12] suggested the latter as a mathematical model for gelation, in
particular, if caused by polycondensation. Lattice–bond-percolation clusters may also contain
loops, and the spatial dimension becomes relevant, too. More importantly, upon identifying the
gelation transition with the lattice–bond-percolation transition, it is revealed to be a continuous
phase transition. Its driving parameter is crosslink concentration, not temperature. Within this
theoretical picture, the critical behaviour at the gelation transition is dictated by scaling and
universality [13, 10].

The resulting predictions for static properties of gelation clusters agree well with
experiments in the vicinity of the sol–gel transition [14, 15]—a substantial improvement over
the mean field-like classical theory. As far as dynamical phenomena are concerned, a variety
of competing attempts have been made to seek an interpretation in terms of the percolation
picture; see e.g. [16–18] for contradictory predictions concerning the shear viscosity. Yet,
all of these attempts rely on more or less ad hoc assumptions needed to compensate for the
lack of thermal fluctuations or any sort of dynamics in a pure percolation model. Rather, the
appropriate strategy should be to start from a (semi-)microscopic dynamical model for gelation
clusters, from which the desired link to quantities in percolation theory can be deduced. This
route will be followed here. Other analytical approaches to gelation from a microscopic model
include [19–27]. Among others, they describe thermostatic fluctuations in the gel phase and
calculate the static shear modulus. Computer simulations of microscopic models for gelation
have been performed by e.g. [28–34].

In this survey we will concentrate on the sol phase and report on results obtained in [35–42].
The dynamics of the sol phase is characterized by strong precursors of the gelation transition,
even well below it. These include anomalous, stretched-exponential decays in time of
both dynamical density correlations [43] and shear-stress relaxation [44]. Both decays are
characterized by typical timescales which diverge when the critical crosslink concentration
is approached. Our exact results on critical rheological properties contradict long-standing
scaling arguments, which are shown to be flawed by inconsistencies.
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The paper is organized as follows. In section 2 we briefly lay out a suitable generalization
of the usual Rouse and Zimm models for linear polymers to describe gelling liquids. The
models are then used to investigate time-dependent density fluctuations in section 3. Section 4
deals with stress relaxation and critical rheological properties in a simple shear flow. Both
sections 3 and 4 are subdivided into a part pertaining to the Rouse model, a part pertaining
to the Zimm model and a part where the results are discussed and put in a wider perspective.
Finally, section 5 adds some closing remarks.

2. Rouse and Zimm models for randomly crosslinked monomers

In this section we give a brief description of a model which is to be considered a
theoretical minimal model for the dynamics of gelling complex fluids. This model is a
generalization of one of the most fundamental models of polymer physics [45–48] to the
case of randomly connected monomers. In this context, it has been discussed before by
e.g. [49–56, 35, 37–39, 57–59, 40–42].

2.1. Dynamical equation

We consider N point-like monomers, which are characterized by their time-dependent position
vectors Ri(t), i = 1, . . . , N , in three-dimensional Euclidean space R

3. Permanently
formed, harmonic crosslinks connect M randomly chosen pairs of monomers (ie, je), where
1 � ie �= je � N for all e = 1, . . . , M . The potential energy associated with these entropic
Hookean springs takes the form

V := 3

2a2

M∑

e=1

(
Rie − R je

)2 =:
3

2a2

N∑

i, j=1

Ri · �i, jR j , (1)

where the length a > 0 plays the role of an inverse crosslink strength, and physical units
have been chosen such that kBT = 1. It will be convenient to specify a given crosslink
configuration G := {(ie, je)}M

e=1 in terms of its N × N connectivity matrix �, which is defined
by the right equality in (1). For part of what follows this setting could be generalized to
the crosslinking of N identical molecular units which consist themselves of a given number
of monomers that are connected in some fixed manner, such as N identical chains, rings or
stars of monomers [37, 38]. For ease of presentation, however, we will not consider such a
generalization here. The potential energy (1) accounts for the connectivity of the monomers
only and ignores all other kinds of interactions between them. In particular, it does not capture
excluded-volume effects, that is, a monomer–monomer repulsion at short distances.

We study the dynamics of these harmonically crosslinked monomers in the presence of
an incompressible solvent fluid, which may induce hydrodynamic interactions between them.
Hydrodynamic interactions will be incorporated on a preaveraged level in the spirit of Kirkwood
and Riseman [60] and Zimm [46]. This is a traditionally accepted way of proceeding, although
the limitations of this approach are still not sufficiently well explored [47, 48]. We also allow
for the presence of an externally imposed, simple shear flow in the x-direction

v(r, t) := γ̇ (t)y ex (2)

with a time-dependent shear rate γ̇ (t). Here r = (x, y, z). A purely relaxational monomer
dynamics is then described by [47, 48]

d

dt
Ri(t) − v

(
Ri(t), t

) = −
N∑

j=1

H
eq
i, j

∂V

∂R j(t)
+ ξi(t) (3)
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for i = 1, . . . , n. This is the defining equation of the Zimm model for crosslinked monomers
(in solution). The rest of this subsection is devoted to a brief explanation and discussion of (3);
see [41, 42] for more details.

The jointly Gaussian thermal noises ξi in (3) have zero mean and covariance ξi (t) ξ†
j (t

′) =
2 Heq

i, j δ(t−t ′)1, as is required by the fluctuation response theorem. As usual, the ξi ‘thermalize’
the system in the long-time limit. Here, the dagger denotes the transposition of a vector, δ the
Dirac delta function and 1 the 3 × 3 unit matrix.

Interactions between the monomers and the solvent fluid are subsumed in the spatially
isotropic and homogeneous preaveraged mobility matrix

Heq
i, j := 1

ζ

[
δi, j + (1 − δi, j )h

(
κ2 π/Ri, j

)]
. (4)

It emerges [41, 42] from taking Oseen’s expression [61, 60] for the mobility tensor and
averaging it with respect to the suitably normalized Boltzmann weight ∼e−V . However,
when it is indispensable to have a positive definite mobility matrix in the following, we will
replace the Oseen tensor with the Rotne–Prager–Yamakawa tensor [62, 63] in this procedure.
Depending on which tensor is used, the function h in (4) is given by [64]

h(x) :=
{√

x/π Oseen,
erf(

√
x) − (1 − e−x)/

√
πx Rotne–Prager–Yamakawa.

(5)

The expression in the second line of (5) involves the error function erf and reduces to the
expression of the Oseen case asymptotically as x ↓ 0. The diagonal term in the preaveraged
mobility matrix (4), which is proportional to the Kronecker symbol δi, j, accounts for a frictional
force with friction constant ζ that acts when a monomer moves relative to the externally
imposed flow field (2). The non-diagonal term reflects the solvent-mediated average influence
of the motion of monomer j on monomer i . The parameter κ := √

6/π ζ/(6πηsa) involves
the solvent viscosity ηs and serves as the coupling constant of the hydrodynamic interaction.
Formally setting κ = 0 in (4) yields H

eq
i, j = ζ−1δi, j , and the Zimm model for crosslinked

monomers reduces to the Rouse model for crosslinked monomers [35–40]

d

dt
Ri(t) − v

(
Ri(t), t

) = − 1

ζ

∂V

∂Ri(t)
+ ξi (t), (6)

where i = 1, . . . , n and the jointly Gaussian thermal noises ξi have zero mean and covariance

ξi (t) ξ†
j(t

′) = (2/ζ ) δ(t − t ′)1. It is only for convenience that we introduced the Rouse model
as the special case κ = 0 of the Zimm model here. Physically, it has its own standing as
the minimal model for polymer melts under theta conditions; see e.g. [47, 48] for the case of
linear polymer chains. In particular, all the approximations that entered the derivation of the
(off-diagonal part of the) preaveraged mobility matrix Heq do not affect the Rouse model, of
course.

It remains to explain the quantity Ri, j in (4), which, when multiplied by a2, is simply
the mean squared displacement between monomers i and j in the thermal equilibrium state
characterized by the suitably normalized Boltzmann weight ∼e−V . In order to write down
a formula for Ri, j , let us remark that, by construction, the connectivity matrix � ≡ �(G) is
block diagonal with respect to the clusters of a given crosslink configuration G (which are the
maximal connected components of G). Moreover, �(G) possesses as many zero eigenvalues as
there are clusters in G. This is easily seen from the fact that the centre of mass of each cluster
does not feel a force from the potential energy V . Hence, � cannot be inverted, but it possesses
a Moore–Penrose pseudo-inverse Z [65], which is the inverse of � on the complement of its
zero eigenspace and zero elsewhere. It can be represented as Z := (1 − E0)/�, where E0
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denotes the projector on the zero eigenspace of � in R
N and 1 denotes the N × N unit matrix.

The mean squared displacement Ri, j is then given in terms of Z according to

Ri, j :=
{

Zi,i + Z j, j − 2Zi, j if i and j belong to the same cluster,

+∞ otherwise.
(7)

There is also another interpretation for Ri, j , which we will use below: viewing each monomer
as an electric contact and each crosslink as a unit Ohmic resistor connecting two contacts, Ri, j

is the effective electric resistance between the contacts i and j of this corresponding electrical
resistor network [66]. This exact correspondence between Hookean bead–spring clusters and
Ohmic electrical resistor networks relies on the linearity of Hooke’s and Ohm’s law.

Since both the connectivity matrix � and the preaveraged mobility matrix Heq are block
diagonal, it follows that clusters move independently of each other in this model. Yet, the
system described is highly multi-disperse and will exhibit typical complex-fluid-like behaviour.
The salient technical feature of the Zimm and Rouse equations (3) and (6) is that they are linear
in the monomer positions. Hence, they admit an explicitly known solution. The results we
present in this paper rely heavily on this solution.

2.2. Average over the crosslink ensemble

So far, everything in this section was meant for an arbitrary but fixed realization G of
M crosslinks among N monomers. For practical reasons, G can never be determined
experimentally in macroscopically large gelling fluids. Neither should physically meaningful
observables depend on specific microscopic details of G—only on some macroscopic
characteristics of it. Therefore, we follow the general philosophy of the theory of disordered
systems and take G as an element of a statistical ensemble of crosslink configurations, within
which it occurs with probability PN (G). The just made statement on physically meaningful
observables A(G) now translates into a self-averaging property: the two quantities A(G) and
its ensemble average

∑
G′ PN (G′)A(G′) coincide (with probability one) in the macroscopic

limit. Therefore we will compute the macroscopic limit

〈A〉 := lim
N→∞

∑

G
PN (G)A(G) (8)

of such averages with a fixed crosslink concentration c := limN→∞ M/N . This will be done
for two different crosslink ensembles.

(i) Clusters are generated according to three-dimensional continuum percolation, which is
closely related to the intuitive picture of gelation, where monomers are more likely to be
crosslinked when they are close to each other. Since continuum percolation and lattice
percolation are believed to be in the same universality class [10], we employ the scaling
description of the latter. It predicts [10] a cluster size distribution of the form

τn ∼ n−τ exp{−n/n∗} (9)

for ε := (ccrit −c) � 1 and n → ∞ with a typical cluster size n∗(ε) ∼ ε−1/σ that diverges
as ε → 0. Here, σ and τ are (static) critical exponents; see table 1 for their numerical
values.

(ii) Each pair of monomers is chosen independently with equal probability c/N , corresponding
to Erdős–Rényi random graphs, which are known to resemble the critical properties of
mean field percolation [9]. After taking the macroscopic limit, there is no macroscopic
cluster for c < ccrit = 1/2 and almost all clusters are trees [67]. Furthermore, all nn−2

trees of a given ‘size’ n, that is, with n monomers, are equally likely. The cluster size
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Table 1. Numerical values for the critical exponents of the cluster size distribution (9) and the two
fractal dimensions of Gaussian phantom clusters in (27). The values are listed for cluster statistics
according to three-dimensional bond percolation (3D) and Erdős–Rényi random graphs (ER).

τ σ ds d(G)
f

3D 2.18 0.45 1.33 3.97
ER 5/2 1/2 4/3 4

distribution can also be cast into the scaling form (9) with the exactly known critical
exponents τ and σ listed in table 1.

Three-dimensional percolation is known to yield a good description of the cluster statistics
and other geometric (static) cluster properties that are found experimentally when crosslinking
a polymer melt [14]. While the Rouse model primarily applies to polymer melts, too, the
Zimm model applies to dilute solutions [47, 48]. Combining the Zimm model for crosslinked
monomers with percolation statistics corresponds to an experimental set-up where a polymer
melt is first crosslinked and then diluted to probe its dynamics. Crosslinking a dilute solution
right away would require one to account for swelling effects in the crosslink distribution; see
e.g. [50]. The second cluster statistics, which corresponds to Erdős–Rényi random graphs,
is of course less realistic and considered mainly for its simplicity. In many cases, it allows
for exact analytical computations and not only for a scaling description as finite-dimensional
percolation does.

3. Time-dependent density fluctuations

In this section we address dynamical properties of gelling liquids in thermal equilibrium.
Therefore we will assume throughout this section that there is no externally imposed shear
flow, i.e. γ̇ = 0.

Experiments [43, 68] on quasi-elastic light scattering in gelling liquids allow one to
measure how spatial density fluctuations of a given wavevector q are correlated with each
other at different times t . This information is encoded in the incoherent intermediate scattering
function

S(q, t) := lim
t0→−∞

1

N

N∑

i=1

eiq·[Ri (t+t0)−Ri (t0)]. (10)

The right-hand side of (10) is determined by the solution Ri(t) of the dynamical equation (3)
for a given crosslink realization G and with initial conditions being imposed at time t0. The
average over the thermal noise and the subsequent limit t0 → −∞ in (10) ensure that the system
reaches its thermal equilibrium state. Then, for large retardation times t , one expects [69, 43]
this correlation to be determined by the slowest relaxation processes in the system. Due
to the independent motion of different clusters in the model under consideration, the slowest
relaxation processes correspond to the centre-of-mass diffusion of whole clusters of monomers.
This argument can be quantified—see e.g. [35, 41] or equation (4.12) in [37]—and yields

S(q, t)
t→∞∼

K∑

k=1

Nk

N
exp{−q2t D(Nk)}. (11)

Here we have set q := |q| and introduced the clusters Nk , k = 1, . . . , K , of the given crosslink
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configuration G. The number of monomers in the cluster Nk is denoted by Nk and

D(Nk) := lim
t→∞

1

6t

[
RCM k (t) − RCM k (0)

]2 =
( ∑

i, j∈Nk

[
1

Heq

]

i, j

)−1

(12)

defines its diffusion constant in terms of the mean square displacement of its centre of mass
RCMk (t) := N−1

k

∑
i∈Nk

Ri(t). The right equality in (12) follows from a short calculation
with the exact solution of the dynamical equation (3). It was previously established in [70].
Another diffusion constant has been introduced by Kirkwood [48, 47]:

D̂(Nk) := 1

N2
k

∑

i, j∈Nk

H
eq
i, j . (13)

It provides an upper bound to the former,

D(Nk) � D̂(Nk), (14)

as can be shown by applying the Jensen–Peierls inequality—see e.g. section 8c in [71]—to (12).
Customarily, one also defines an effective diffusion constant Deff for the whole gelling liquid
by

D−1
eff := lim

q→0
q2

∫ ∞

0
dt S(q, t) =

K∑

k=1

Nk

N

1

D(Nk)
. (15)

Since S(q, t) is expected to develop a time-persistent part in the gel phase, Deff is expected to
vanish when approaching the gelation transition from the sol side.

3.1. Rouse dynamics

We recall from section 2.1 that in the absence of hydrodynamic interactions, κ = 0, we
have Heq

i, j = ζ−1δi, j . Hence, the cluster diffusion constant (12) and the Kirkwood diffusion
constant (13) are equal:

D(Nk) = D̂(Nk) = 1

ζ Nk
, (16)

and inversely proportional to the number of monomers in the cluster [35]. In other words,
cluster topology does not influence diffusion within Rouse dynamics.

Next, we discuss the long-time behaviour of the incoherent intermediate scattering function
in the macroscopic limit. According to section 2.2, this amounts to calculating the average
of (11):

〈S(q, t)〉 t→∞∼
〈 K∑

k=1

Nk

N
exp{−q2t D(Nk)}

〉
. (17)

Thanks to (16) this averaging is easily performed by reordering the clusters according to their
size:

〈S(q, t)〉 t→∞∼
∞∑

n=1

nτn e−q2t/(ζn), (18)

where

τn :=
〈 K∑

k=1

1

N
δNk ,n

〉
(19)



S1666 H Löwe et al

is the cluster size distribution and (18) holds in the absence of an infinite cluster. Using the
scaling form (9) of τn , we find [35, 37]

〈S(q, t)〉 t→∞∼
(

ζ

q2t

)y {
1 ε = 0,
[t/t∗

q (ε)](y−1/2)/2 exp{−const.[t/t∗
q (ε)]1/2} ε > 0.

(20)

At the critical point, the long-time decay is algebraic with a critical exponent y = τ − 2. In
the sol phase one has a Kohlrausch or stretched-exponential behaviour with a timescale that
diverges as t∗

q (ε) ∼ (ζ/q2)ε−µ with a critical exponent µ = 1/σ , when the critical point is
approached.

For the effective diffusion constant (15) we conclude from (20) that it vanishes like

〈Deff 〉 ∼ lim
q↓0

[
q2tq(ε)

]−(3−τ) ∼ εa with a = (3 − τ )/σ (21)

as ε ↓ 0.
The exponent a could also have been deduced directly from the right expression in (15).

Indeed, given any cluster-additive observable, a reordering of the clusters according to their
size yields

〈A〉 =
〈 K∑

k=1

Nk

N
A(Nk)

〉
=

∞∑

n=1

nτn〈A〉n, (22)

where

〈A〉n := 1

τn

〈 K∑

k=1

1

N
δNk ,n A(Nk)

〉
(23)

is the partial average of A over all clusters of a given size n. Now, if the partial averages exhibit
the critical divergence

An := 〈A〉n

∣∣
ε=0 ∼ nb, (24)

then

〈A〉 ∼ ε−u as ε ↓ 0 with u = (2 − τ + b)/σ, (25)

provided that u > 0.

3.2. Zimm dynamics

In contrast to the free-draining limit described by Rouse dynamics in the last subsection,
one expects that with hydrodynamic interactions being present, cluster topology will have an
influence on the diffusion constants.

For simplicity, let us start with the Kirkwood diffusion constant. In order to extract a size
dependence from D̂, we look at the average 〈D̂〉n over all clusters of a given size n and study
its behaviour as a function of n. More specifically, we will perform this averaging precisely
at the critical concentration ccrit , where we expect an algebraic decrease as n → ∞ due to
the absence of any other length scale at criticality. Indeed, using the Oseen tensor for the
hydrodynamic interactions we deduce from (13), (4) and (5) that

D̂n := 〈D̂〉n

∣∣
c=ccrit

= 1

ζn
+

κ

ζn2

n∑

i, j=1
i �= j

〈R−1/2
i, j 〉n

∣∣
c=ccrit

n→∞∼ 1

ζ

(
1

n
+

λκ

n1/d(G)

f

)
, (26)

where λ is some dimensionless proportionality constant. The asymptotic behaviour of the
average over the resistances in (26) is derived in [41]. The derivation has to distinguish
between the two different cases for the crosslink ensemble. For Erdős–Rényi random graphs
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Figure 1. (a) Dn at the gel point for mean field percolation and different hydrodynamic interaction
strengths. (b) The same for three-dimensional bond percolation.

the asymptotics can be deduced from the exact probability distribution ofRi, j in [72]. For three-
dimensional bond percolation we use the scaling form of the probability distribution, which
was established within two-loop order of a renormalization-group treatment of an associated
field theory [73, 74]. Equation (26) involves the fractal Hausdorff dimension

d(G)

f := 2ds/(2 − ds) (27)

of Gaussian phantom clusters, which also determines the scaling of their radius of gyration
according to [50, 52, 55]

Rgyr,n :=
[

1

2n2

n∑

i, j=1

〈
(Ri − R j)

2〉
n

∣∣
c=ccrit

]1/2
n→∞∼ n1/d(G)

f . (28)

The other fractal dimension in (27) is the spectral dimension ds of the incipient percolating
cluster [75, 76]. Their numerical values are listed in table 1. We conclude from (26) that D̂n

shows a crossover from Rouse behaviour D̂n ∼ n−1 for n < n̂(κ) ∼ κ−1/(1−1/d(G)
f ) to Zimm

behaviour

D̂n ∼ n−1/d(G)
f ∼ 1/Rgyr,n (29)

for asymptotically large n > n̂(κ).
Now we turn to the averaged diffusion constant

Dn := 〈D〉n

∣∣
c=ccrit

n→∞∼ n−bD (30)

of clusters of size n at the gel point, which is also expected to obey a critical scaling for large
cluster sizes n. From the Jensen–Peierls inequality Dn � D̂n , see (14), we then infer the
inequality

bD � 1/d(G)

f (31)

for the critical exponents. Figure 1 shows numerical data for the cluster diffusion constant
Dn , plotted against n, for different values of the hydrodynamic interaction strength κ . The
crosslink ensemble in figure 1(a) corresponds to Erdős–Rényi random graphs. In figure 1(b)
crosslinks were chosen according to three-dimensional bond percolation. In the numerical
computations we have used Heq corresponding to the Rotne–Prager–Yamakawa tensor so that
a positive definite mobility matrix is always guaranteed. Like the Kirkwood diffusion constant,
Dn also exhibits a crossover from Rouse to Zimm behaviour at a cluster size comparable to
n̂(κ). Figure 2 shows the exponent bD of the power-law fit (30) to the data of figure 1 in the
large-n regime for the different values of κ . The horizontal dashed lines in figures 2(a) and (b)
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Figure 2. (a) Critical exponents bD , corresponding to a power-law fit Dn ∼ n−bD in figure 1(a).
(b) The same for figure 1(b).

correspond to the exponent value 1/d(G)

f of the respective Kirkwood diffusion constant. The
bigger exponent values that occur for small values of κ still show residual Rouse behaviour
for the largest system sizes we treated. For bigger values of κ the crossover can hardly be felt
any more in the largest systems, and the extracted exponent value bD corresponds to Zimm
dynamics. This value is very close to the scaling exponent in (29) for the Kirkwood diffusion
constant, and, in fact, we conjecture that

bD = 1/d(G)

f . (32)

We now turn to the long-time behaviour of the incoherent intermediate scattering
function (10). The asymptotics (11), (22) and Jensen’s inequality yield the lower bound [41]

〈S(q, t)〉 �
∞∑

n=1

nτne−q2t Dn . (33)

In fact, there is numerical evidence that this inequality actually captures the correct long-time
asymptotics of 〈S(q, t)〉. Evaluating the right-hand side of (33) for large times t , this then
leads to the scaling form [41]1

〈S(q, t)〉 t→∞∼
(

ζ

q2t

)y {
1 ε = 0,
[t/t∗

q (ε)]x(y−1/2) exp{−const. [t/t∗
q (ε)]x} ε > 0

(34)

with the timescale t∗
q (ε)

ε↓0∼ q−2ε−z . The exponents are given by

x = (1 + bD)−1, y = (τ − 2)/bD, z = bD/σ (35)

and are expressed in terms of bD ≈ 0.25; see (32) and table 1. The Rouse limit (20) of (34)
corresponds to setting bD = 1 in the above expressions.

The critical vanishing

〈Deff 〉 ∼ εa with a = (2 − τ + bD)/σ (36)

of the effective diffusion constant follows directly from (22)–(25) provided that a > 0. This
condition is fulfilled for three-dimensional bond percolation where a ≈ 0.16, but violated for
Erdős–Rényi random graphs. Finally, we would like to point out that, regardless of the cluster
statistics, the ensemble averaged diffusion constant 〈D〉 never vanishes at the critical point.
This is simply because it has non-vanishing contributions from all clusters, which add up.

1 Note that there is a misprint in the second line after equation (30) in [41]. The algebraic prefactor in the scaling
form of the function s(λ) should read λx(y−1/2) instead of λxy .
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Table 2. Summary of critical exponents for cluster diffusion constants and the incoherent
intermediate scattering function (see equations (30), (20) and (34) for their definitions). The
numerical values for Rouse and Zimm dynamics—listed for cluster statistics from three-
dimensional bond percolation (3D) and Erdős–Rényi random graphs (ER)—are compared to
experimental findings.

Zimm Rouse

Exponent 3D ER 3D ER [68] [77] [78]

bD 0.25 1/4 1 1
x 0.80 4/5 1/2 1/2 0.66 0.3–0.8 0.64
y 0.71 2 0.18 1/2 0.27 0.2–0.3 0.34
z 0.56 1/2 2.22 2 2.5
a 0.16 a 1.82 1 1.9 0.5–1 1.9

a No divergence.

3.3. Discussion

We have studied the critical scaling Dn ∼ n−bD of the averaged cluster diffusion constants over
clusters of size n and used it to obtain the scaling behaviour of the intermediate incoherent
scattering function 〈S(q, t)〉 near criticality. The associated critical exponents are summarized
in table 2. Within Rouse dynamics, cluster diffusion constants are inversely proportional to
the cluster size n, irrespective of the cluster topology, that is, bD = 1. Zimm dynamics leads to
bD = 1/d(G)

f , see (32), and topology does play a role: indeed, it is well known [48] that within
Zimm dynamics the diffusion constant of a linear chain of n monomers decreases as n−1/2.
Since bD ≈ 0.25 < 1/2, this means that, on average, a monomer in a branched cluster feels less
friction—which is intuitively appealing, because monomers in the interior of a cluster should
be dragged along. Second, (28), (30) and (32) imply for Zimm dynamics that Dn ∼ 1/Rgyr,n .
Hence, this relation not only holds for linear chains, for which it has been well known [48],
but also in an average sense for all percolation clusters.

Concerning the scaling exponents of the incoherent intermediate scattering function,
table 2 shows that neither Rouse nor Zimm dynamics provides even a reasonably good
description of the experimental findings, despite the strong scatter. There are several reasons
for the discrepancies between the model predictions and experiments. (i) Our results pertain
mainly to θ -conditions, in so far as excluded-volume interactions have been neglected.
Excluded-volume interactions could cause a swelling of the clusters,which results in a different
fractal Hausdorff dimension. (ii) We chose cluster statistics according to three-dimensional
bond percolation. This accounts well for crosslinking in a dense melt, say, but not in dilute
solutions. (iii) Hydrodynamic interactions are screened in dense solutions [48] and therefore
they should also be screened in the vicinity of the gelation transition, where monomers
agglomerate in denser regions to form large clusters. It has also been suggested [68] that
hydrodynamic interactions between monomers within a cluster are screened by smaller clusters
in the reaction bath. In any case one concludes that the Rouse rather than the Zimm model
should apply for the description of critical properties, which are determined by the largest
clusters. Our analysis supports this conclusion in so far as the exponents of the Rouse model
are closer to the experimental values. So the more striking failure of the Zimm model can
be traced back to a too slow decay of Dn with n. (iv) Preaveraging of the hydrodynamic
interactions is an uncontrolled approximation, and it remains to be seen what a full treatment
of hydrodynamic interactions predicts for the critical dynamics of gelling solutions.
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4. Stress relaxation

Gelling liquids exhibit striking rheological properties which have been continuously studied
over the years by experiments [79–86], theories [11, 16, 50, 87, 88, 35, 89, 36, 37, 90, 38, 39]
and simulations [28, 29, 31, 91, 32–34]. For example, under subjection to homogeneous shear
flow (2), distinct relaxation patterns are observed, which are due to the participation of many
different excitation modes of all sorts of clusters. More precisely, experiments suggest the
scaling form [92, 44, 80–82, 86, 87]

〈G(t)〉 ∼ t−�g(t/t) with t(ε) ∼ ε−z (37)

for the macroscopic (shear-)stress-relaxation function in the sol phase for asymptotically long
times t and crosslink concentrations close to the critical point, i.e. for ε � 1. The typical
relaxation time t diverges with a critical exponent z > 0 for ε ↓ 0. The scaling function g is
of order unity for small arguments so that one finds the algebraic decay 〈G(t)〉 ∼ t−� with a
critical exponent 0 < � � 1 for t → ∞ at the critical point. For large arguments, g decreases
faster than any inverse power. Sometimes a stretched exponential has been proposed for g in
this asymptotic regime [82, 87].

In this section we will investigate to what extent such critical properties can be predicted
by the Rouse and Zimm models. Thus we will explore the consequences of the dynamics (3)
(resp. (6)) in the presence of the externally applied simple shear flow (2). In reaction to the flow,
the system of crosslinked monomers builds up an intrinsic shear stress. Following Kirkwood,
see e.g. chapter 3 in [48] or chapter 16.3 in [47], this shear stress is given by the force per unit
area exerted by the monomers:

σ(t) = lim
t0→−∞ − ρ0

N

N∑

i=1

Fi(t)R
†
i (t). (38)

Here, Ri(t) is the solution of the equation of motion (3) with some initial condition at time t0 in
the distant past (so that the noise average yields a thermalized state in which all transient effects
stemming from the initial condition have died out). Moreover, ρ0 stands for the monomer
concentration and Fi(t) := −∂V/∂Ri(t) is the net spring force acting on monomer i at time
t . The explicit computation [37, 38] of the right-hand side of (38) yields

σ(t) = G(0) 1 +
∫ t

−∞
dt ′ G(t − t ′) γ̇ (t ′)

( 2
∫ t

t ′ ds γ̇ (s) 1 0
1 0 0
0 0 0

)
(39)

for arbitrary strengths of the shear rate γ̇ (t). Here, we have defined the stress-relaxation
function

G(t) := ρ0

N
Tr

[
(1 − Ẽ0) exp

(
− 6t

a2
�̃

)]
(40)

as a trace over the matrix exponential of �̃ := (Heq)1/2� (Heq)1/2. Due to the occurrence of
the spectral projector Ẽ0 on the kernel of �̃, this trace is effectively restricted to the subspace
of non-zero eigenvalues.

For a time-independent shear rate γ̇ , the shear stress (39) is also independent of time. The
viscosity η is then related to the shear stress via

η := σx,y

γ̇ ρ0
= 1

ρ0

∫ ∞

0
dt G(t) = a2

3

1

2N
Tr

[
1 − Ẽ0

�̃

]
. (41)

Apparently, the viscosity is determined by the trace of the Moore–Penrose inverse of �̃. The
normal stress coefficients are given by

�(1) := σx,x − σy,y

γ̇ 2ρ0
= 2

ρ0

∫ ∞

0
dt tG(t) =

(
a2

3

)2
1

2N
Tr

[
1 − Ẽ0

�̃2

]
(42)
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and

�(2) := σy,y − σz,z

γ̇ 2ρ0
= 0. (43)

The vanishing of �(2) is typical for Rouse/Zimm-type models and is well known for the case
of linear polymers [48]. Since �̃ is block diagonal with respect to the clusters, the observables
G(t), η and �(1) are all cluster additive in the sense of (22).

The scaling form (37) of the macroscopic stress-relaxation function 〈G(t)〉 implies that
the macroscopic viscosity and first normal stress coefficient exhibit a critical divergence

〈η〉 ∼ ε−k and 〈�(1)〉 ∼ ε−� (44)

at the sol–gel transition as ε ↓ 0 with critical exponents given by the scaling relations [44, 39]

k = z(1 − �) and � = z(2 − �) = k + z. (45)

Thus, it suffices to know any two of the four critical exponents �, z, k and �.

4.1. Rouse dynamics

For Rouse dynamics we have �̃ = �/ζ so that the computation of the stress-relaxation function,
the viscosity or the first normal stress coefficient requires the knowledge of spectral properties
of the connectivity matrix �.

Concerning the macroscopic viscosity 〈η〉, there are several ways of calculating the critical
exponent k in (44). The different ways explore connections to problems in different branches
of research. Given a cluster Nk , the trace of the Moore–Penrose inverse of �(Nk) can be
expressed in terms of the resistances (7) according to [36, 37]

η(Nk) = ζa2

6Nk
Tr

[
1 − E0(Nk)

�(Nk)

]
= ζa2

12N2
k

∑

i, j∈Nk

Ri, j . (46)

We stress that this is an exact relation [66]. It has nothing to do with electrical analogues put
forward in scaling arguments [69]. For the case of Erdős–Rényi random graphs there are only
tree clusters for c < ccrit = 1/2. In this special case the resistance Ri, j reduces to the graph
distance of i and j in Nk , and the right-hand side of (46) is known as the Wiener index W (Nk)

in graph theory. From a graph-theoretical point of view, the right equality in (46) follows also
as an application of the matrix-tree theorem; see e.g. [93], theorem 5.5. Moreover, the partial
averages 〈W 〉 are exactly known [72] and, using (22), one finds the exact result [36, 37]

〈η〉 = ζa2

24c

[
ln

(
1

1 − 2c

)
− 2c

]
. (47)

It can be interpreted as a critical divergence with exponent k = 0. Alternatively, (47) can
also be obtained from a replica approach [37] instead of using graph theory. The replica
approach is also capable of providing us with higher inverse moments 〈N−1 Tr[(1 − E0)/�ν ]〉
for not too large positive integers ν [90]. Using these results for ν = 2, a (somewhat lengthy)
exact expression for �(1) was derived in [39] for crosslink statistics from Erdős–Rényi random
graphs. It exhibits the critical behaviour

〈�(1)〉 ∼ ε−� with � = 3. (48)

Now we turn to the crosslink ensemble of three-dimensional bond percolation. In order
to proceed from (46) in this case, one needs to know the average resistance 〈Ri, j 〉n between
two nodes in bond-percolation clusters of size n. Luckily, random electric resistance networks
have been studied extensively, and the asymptotic behaviour

〈Ri, j 〉n ∼ nbη with bη := (2/ds) − 1 (49)
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can be extracted [36, 37] from highly developed renormalization-group treatments of an
associated field theory [73, 74]. Thus, (46), (22) and (25) lead to the critical behaviour
〈η〉 ∼ ε−k with

k = (1 − τ + 2/ds)/σ (50)

as ε ↓ 0. Of course, this exact scaling behaviour reduces to the Erdős–Rényi result k = 0
from (47), on inserting the appropriate mean field values for the exponents.

None of the above approaches is able to yield any of the other critical exponents � and
z—or even � in the case of three-dimensional percolation statistics. Here, a connection to
random walks in random environments is helpful. For the time being, let us concentrate on
the case of three-dimensional percolation statistics, where the maximum number of bonds
emanating from any vertex is limited to m = 6 on the simple cubic lattice. Now, consider a
random walker—termed a ‘blind ant’ by de Gennes [12]—that moves along a bond from one
site to another in the same cluster in discrete time steps [10, 76, 94, 95]. If the ant happens to
visit site i at time s, which is connected with mi � m bonds to other sites, then it will move
with equal probability 1/m along any one of the mi bonds within the next time step and stay
at site i with probability 1 − mi/m. By definition of the connectivity matrix � of the cluster,
one has �ii = mi for its diagonal matrix elements, �i j = −1 if two different sites i �= j are
connected by a bond and zero otherwise. Hence, the associated master equation for the ant’s
sojourn probability pi(s) for site i at time s reads

pi(s + 1) = (1 − �ii/m)pi(s) +
∑

j �=i

(−�i j/m)p j(s), (51)

which is equivalent to

pi(s + 1) − pi(s) = −m−1
∑

j

�i j p j(s). (52)

Here the summation extends over all sites in the cluster. For long times s � 1, it is legitimate
to replace the difference (quotient) on the left-hand side of (52) by a derivative. This yields the
solution pi(s) = [

e−s�/m
]

ii0
, which corresponds to the initial condition pi(0) = δi,i0 . Next we

consider P(n)(s) := 〈pi0(s)〉n|ε=0, the mean probability of return to the starting point after time
s, where the average is taken over all critical percolation clusters with n sites. Clearly, these
definitions are independent of the starting point i0, because on average there is no distinguished
site by assumption. Thus we can also write

P(n)(s) =
〈

1

n
Tr e−s�/m

〉

n

∣∣∣∣
ε=0

(53)

for finite n. The return probability behaves as [76, 95, 94]

P(n)(s) ∼ s−ds/2F(s/sn) + 1/n, (54)

where sn ∼ n2/ds and the cut-off function F(x) is of order one for x � 1 and decreases rapidly
to zero for x → ∞. Basically, (54) says that for times s � sn the walker has no memory of
where it started from. For times s � sn the fractal-like nature of a cluster at c = ccrit leads
to an algebraic decrease of the return probability, which involves the spectral dimension ds.
Now, assuming that 〈G(t)〉 obeys the scaling form (37), the information provided by (54) for
c = ccrit is sufficient for concluding [40] the exponent relations

� = ds

2
(τ − 1) and z = 2

dsσ
. (55)

When plugging (55) into (45), we recover (50) and get the new scaling relation

� = (1 − τ + 4/ds)/σ. (56)
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Since, the critical behaviour of Erdős–Rényi random graphs coincides with that of mean field
percolation, we get the missing exponents � and z for that case by inserting the mean field
values into (55).

4.2. Zimm dynamics

The matrix �̃, which determines stress relaxation, is far more complicated than � in the
presence of hydrodynamic interactions. In particular, it reflects cluster topology only in a
much more subtle way than �. In fact, it was that apparent encoding of topology in � that
made the analytical methods of the last subsection work. In the absence of suitable analytical
tools, numerical methods remain for investigating stress relaxation in the Zimm model.

We determined the scaling as n → ∞ of the partial averages

ηn := 〈η〉n

∣∣
ε=0 ∼ nbη and �(1)

n := 〈�(1)〉n

∣∣
ε=0 ∼ nb� (57)

at criticality by numerically diagonalizing �̃ and performing the disorder average over the
crosslink ensemble [42]. The critical exponents k and � then follow from (25). All numerical
computations were done with the Rotne–Prager–Yamakawa tensor for the hydrodynamic
interactions. The reader who is interested in more details of the numerical computations
is referred to [42].

In figures 3(a) and (b) we plot ηn and �(1)
n as a function of n on a double-logarithmic scale

for different values of the hydrodynamic interaction parameter κ . Crosslink statistics were
chosen according to Erdős–Rényi random graphs. The exponents bη and b� are obtained from
power-law fits in the large-n range and are displayed in figure 3(c). The viscosity exponent
decreases from bη = 0.28 for κ = 0.05 to bη = 0.11 for κ = 0.3. We recall from (46) and (49)
that the Rouse exponent for κ = 0 is exactly given by bη = 1/2. The exponent b� of the
normal stress coefficient ranges from b� = 1.2 for κ = 0.05 to b� = 0.73 for κ = 0.25. The
exact Rouse value b� = (4/ds) − 1 = 2 for κ = 0 follows from (48) and (25).

The same is done for three-dimensional bond percolation in the right column of figure 3.
Figures 3(d) and (e) contain ηn and �(1)

n , respectively, as a function of n on a double-logarithmic
scale for different values of κ . The exponents bη and b� , extracted by fitting the curves in
figures 3(d) and (e) to a power law for large n, are shown in figure 3(f). The numerical values
for bη are nearly identical to those obtained for Erdős–Rényi random graphs. Again, one
observes a decrease from bη = 0.21 for κ = 0.05 to bη = 0.11 for κ = 0.3. The exponent b�

of the normal stress coefficient ranges from b� = 1.1 for κ = 0.05 to b� = 0.78 for κ = 0.25.
The corresponding exact Rouse values bη = (2/ds) − 1 ≈ 1/2 and b� = (4/ds) − 1 ≈ 2 for
κ = 0 follow from (50) and (56) in the last subsection together with (25).

A careful analysis of the data in [42] reveals that the true Zimm exponents bη and b� are
universal in κ and that their seeming dependence on κ in figures 3(c) and (f) is most probably due
to finite-size effects. More precisely, for small κ the data suffer from a crossover to their respec-
tive Rouse values so that they come out too large. For large κ , on the other hand, the asymptotics
h(x) ∼ 1−(πx)−1/2 as x → ∞ of the lower line in (5) leads to a slower growth of bη and b� at
intermediate n. Hence, the exponents come out too small for larger κ . The most reliable values
for the universal Zimm exponents bη and b� should be obtained from around κ ≈ 0.3. It is
these values which are listed in table 3 below. The critical behaviour of the averaged viscosity
〈η〉 ∼ ε−k and of the averaged first normal stress coefficient 〈�(1)〉 ∼ ε−� for a polydisperse
gelling solution of crosslinked monomers then follows from (25). For the viscosity this implies
a finite value at the gel point for both Erdős–Rényi random graphs and three-dimensional bond
percolation. In contrast, the first normal stress coefficient is found to diverge with an exponent
that depends on the cluster statistics. Choosing the cluster statistics according to Erdős–Rényi
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Figure 3. Numerical data for determining the scaling (57) for random clusters in the case of
Erdős–Rényi random graphs (left column) and three-dimensional bond percolation (right column).
In each case the averaged viscosity ηn (top) and normal stress coefficient �

(1)
n (middle) are plotted

for different strengths of the hydrodynamic interaction parameter κ as a function of the cluster size
n on a double-logarithmic scale. Power-law fits to the data yield the exponents bη and b� as a
function of κ (bottom).

(This figure is in colour only in the electronic version)

random graphs, we find � ≈ 0.54. The case of three-dimensional bond percolation leads to
the higher value � ≈ 1.3. The magnitudes of these exponent values are less than a third of
those of the corresponding exact analytical predictions of the Rouse model from (56) with the
corresponding cluster statistics. All exponent values are summarized in table 3.

4.3. Discussion

A fairly complete scaling picture of the gelation transition has been obtained within Rouse
dynamics. All critical exponents k, �, � and z of the stress-relaxation function in the sol phase
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Table 3. Summary of critical exponents for stress relaxation (see equations (37), (44) and (57)
for their definitions). The numerical values for Rouse dynamics are based on the scaling
relations (49), (50), (55) and (56). Those for Zimm dynamics are based on the data analysis of
figure 3. The values are listed for cluster statistics according to three-dimensional bond percolation
(3D) and Erdős–Rényi random graphs (ER), and are compared to some experimental findings.

Zimm Rouse

Exponent 3D ER 3D ER [96] [83] [97] [98] [99] [100] [101] [81] [84] [102] [103]

k a a 0.71 0b 0.2 0.7 0.82 1.1 1.27 1.3 1.36 1.4 >1.4 6.1
� 1.3 0.54 4.1 3
� 0.79 1 0.72 0.71 0.69 0.67–0.68 0.66 0.70 0.33 0.69–0.77
z 3.3 3 2.9 2.67
bη 0.11 0.11 0.50 1/2
b� 0.77 0.77 2.0 2

a No divergence.
b Logarithmic divergence.

and at criticality could be expressed in terms of two independent static percolation exponents
σ and τ plus the spectral dimension ds of the incipient percolating cluster; see the scaling
relations (50), (55) and (56). These scaling relations and the resulting numerical exponent
values listed in table 3 contradict the predictions k = 2ν − β and � = dν/(dν + k) of earlier
scaling arguments [80, 81, 84, 16, 87, 104]. What is the reason for this discrepancy? The
scaling arguments involve the fractal Hausdorff dimension df := d − β/ν of rigid percolation
clusters at ccrit . Rouse clusters, however, are thermally stabilized, Gaussian phantom clusters
with the fractal Hausdorff dimension d(G)

f ; see (27) [50, 52, 55]. The latter is different from
df in space dimensions below the upper critical dimension du = 6. Indeed, if one replaces df

by d(G)

f in these scaling arguments, as one should consistently do within a Rouse description,
the results will coincide with the ones obtained here.

Since the long-standing scaling relations k = 2ν − β and � = dν/(dν + k) involve
the Hausdorff fractal dimension df of rigid percolation clusters, it is sometimes argued that
they describe the behaviour of a more realistic model, which, in addition to accounting
for the interactions of the Rouse model, accounts for excluded-volume effects, too; see
e.g. [104]. As far as we know, this claim has not been verified by analytical arguments
within a microscopic model. One may even have doubts as to whether this claim is generally
true: extensive molecular dynamics simulations [29] of a system of crosslinked soft spheres in
three dimensions, with cluster statistics from percolation and an additional strongly repulsive
interaction at short distances, yield the values k ≈ 0.7 and � ≈ 0.75, which are remarkably
close to the predictions of the Rouse model for randomly crosslinked monomers; see table 3.
On the other hand, simulations of the bond-fluctuation model in [28] imply k ≈ 1.3 and are
thus in favour of the claim. However, the viscosity is not measured directly in these latter
simulations. Rather it is derived from the scaling of diffusion constants and an additional
scaling assumption that may be questioned [29]. Hence, it is an open problem to what extent
the critical Rouse exponents of table 3 are modified by excluded-volume interactions.

In the context of dynamical critical phenomena, one usually expects dynamical scaling
to hold. Thereby one can infer critical properties of the gel phase from those of the sol
phase. In particular, the critical behaviour of the shear modulus G0 ∼ |ε|µ follows from the
scaling form (37) of the stress-relaxation function. The result µ = �z = (τ − 1)/σ involves
only the two exponents σ and τ of the cluster size distribution. Using well-known scaling
relations of percolation theory, this can be rewritten as µ = dν in terms of the correlation
length exponent ν and the spatial dimension d . It is in agreement with the simple scaling
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argument based on dimensional analysis of the free-energy density. In a recent letter [105],
the scaling of entropic shear rigidity was analysed for both phantom chains and those with
excluded-volume interactions. In both cases the gel was prepared by crosslinking a melt of
chains with excluded-volume interactions. Our choice of percolation statistics combined with
Rouse dynamics should be comparable to that of phantom chains prepared in an ensemble with
excluded-volume interactions. However, the results of [105] for µ disagree with the above
dynamic scaling argument. The reasons for the discrepancy are not understood.

Let us return to the sol phase and discuss the Zimm results, which are based on the exact
numerical determination of the scaling exponents bη and b� for the fixed-size averages (57)
of the viscosity and of the first normal stress coefficient. The resulting finiteness of the
macroscopic viscosity 〈η〉 at the transition is clearly the most serious drawback of the Zimm
model for randomly crosslinked monomers. Also, this failure comes unexpected, because a
well-known scaling argument [14, 106, 50] predicts a logarithmic divergence. This scaling
argument uses the (correct) scaling Dn ∼ 1/Rgyr,n of diffusion constants together with the
Stokes–Einstein relation and yields bη = d/df − 1. Consequently, one gets from (25) the
scaling relation k = (1 − τ + d/d f )/σ . Inserting hyperscaling and the fractal dimension
of rigid percolation clusters, one would get k = 0 from that, which was interpreted as a
logarithmic divergence. But as we remarked already earlier on in this subsection, the correct
fractal dimension df for Gaussian phantom clusters is d(G)

f . For both cluster statistics this would
give an unphysical negative value around −1/4 for bη which can be definitely ruled out by our
data2. Thus, we conclude that the scaling approach of [14, 106, 50] does not apply to the Zimm
model for randomly crosslinked monomers. Another scaling approach to this model by [17] is
also falsified by our data. On the other hand,Brownian dynamics simulations of hyperbranched
polymers were performed in [91]. They also account for fluctuating hydrodynamic interactions
corresponding to κ = 0.35, as well as for excluded-volume interactions and lead to bη = 0.13.
This result is remarkably close to our finding bη ≈ 0.11 for the highest coupling strength
κ = 0.3 that we have considered, whereas experimental findings (see below) are consistently
above our value.

Next, we comment on how the Rouse and Zimm predictions for stress relaxation compare
to experimental reality. Table 3 shows an enormous scatter of the experimental data. Thus,
a serious check of theoretical predictions is currently severely hampered. The origin of this
wide spread of the data is unclear so that even the question of whether the dynamical critical
behaviour at the gelation transition was indeed universal arose [107]. Possible explanations for
non-universal behaviour include the splitting of a static universality class into two dynamical
ones [92, 17] and, for the case of crosslinking long polymer chain molecules (vulcanization),
a decrease of the width of the critical region with increasing chain length [108]. The latter
may explain the observation of a crossover of the behaviour to mean field properties in certain
gelation experiments, if measurements were not performed well inside the true critical region.

As far as we know, no measurements of the critical behaviour of the first normal stress
coefficient have been reported. The Rouse value k ≈ 0.71 for the viscosity and three-
dimensional percolation statistics agrees well with the experiments of [79, 107, 80, 83]
(only [83] was included in table 3 to demonstrate the broad scatter of the viscosity data).
On the other hand, it is not compatible with the possibly oversimplifying albeit attractive
proposal [92, 17] of interpreting the wide variation of the viscosity exponent k as a signature
of a splitting of the static universality class of gelation into different dynamic ones. Indeed,
Rouse and Zimm dynamics are considered [109, 48] to be at the extreme ends of the strength of

2 Unfortunately, the value of bη resulting from this scaling argument in the case of Erdős–Rényi random graphs was
incorrectly ascribed to d = 6 dimensions in the second to last paragraph of [42], leading to the wrong statement
bη = 1/2 there.
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the hydrodynamic interaction. Since the Zimm model does not even predict a divergence at the
transition, the actual value of k should then lie below the Rouse value according to that proposal.

Hence, the broad scatter of the experimental data calls for additional relevant interactions
beyond those accounted for in the Zimm or Rouse model. This may be due to the preaveraging
approximation. In particular, it throws away hydrodynamic interactions among different
clusters. But we do not expect this to be the sole relevant simplification of the Zimm model,
because linear polymers show a decrease in the viscosity when abandoning the preaveraging
approximation [110], and effects of preaveraging for branched molecules are even more
pronounced than those for linear ones [111]. Rather it seems that there are no satisfactory
explanations without considering excluded-volume interactions. Indeed, simulations [28] of
the bond-fluctuation model deliver higher values k ≈ 1.3 in accordance with the scaling
relation k = 2ν − β, which arises from heuristically merging Rouse-type and excluded-
volume properties; see above. On the other hand, entanglement effects are neglected, too.
These topological interactions are argued to play a vital role in stress relaxation. However,
temporary entanglements are expected to play only a minor role [84] for the dynamics close to
the gelation transition. This is because the timescale of a temporary entanglement is determined
by the smaller clusters, whereas near-critical dynamics is determined by the largest clusters,
which contribute the longest timescales. Yet, there remain permanent entanglements due
to interlocking loops. They are clearly far beyond the scope of the present and many other
theoretical approaches.

5. Closing remarks

The list of shortcomings of the Rouse and Zimm models for crosslinked monomers is long,
and it was discussed in sections 3.3 and 4.3. Yet, one should not underestimate the importance
of these models for our understanding of gelling liquids. First, the success of theoretical
physics and, in particular, statistical physics has always relied on capturing the essence of
observable phenomena in simple mathematical models—models that isolate certain physical
mechanisms and, at the same time, sacrifice many details of the observed reality. It is safe to
say that, at least for linear polymers, the Rouse and the Zimm models have proven to be among
this class [47, 48]. Second, simple exactly solvable models always represent benchmarks
against which more elaborate theories, approximation methods and numerical simulations can
be tested. Moreover, in the absence of an ultimate theoretical picture, the predictions of such
minimal models also serve as a standard reference for experimental data. Indeed, such has been
common practice in experimental investigations on gelling liquids over the years; see e.g. the
review articles [112, 44]. It is thus all the more important to have reliable and mathematically
firmly based predictions for these models.
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